ФОНД ОЦЕНОЧНЫХ СРЕДСТВ приложение к рабочей программе ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

ГИДРАВЛИКА И ГИДРОПНЕВМОПРИВОД

Направление подготовки: 23.03.03 Эксплуатация транспортно-технологических ма-

шин и комплексов (академический бакалавриат)

Профиль подготовки: Автомобили и автомобильное хозяйство

Квалификация выпускника: бакалавр

Форма обучения: заочная

Содержание

- 1. Перечень компетенций с указание этапов их формирования в процессе освоения образовательной программы
- 2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы
- 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Коды ком- петенции	Наименование компетенции	Структурные элементы компетенции (в результате освоения дисциплины обучающийся должен знать, уметь, владеть)	Этапы формирования компетенции в про- цессе освоения ОПОП (семестр)	Виды занятий для формиро- вания компе- тенции	Оценочные средства сфор- мированности компетенции
ОПК-1	анализа и моделирования в	Знать: - основные законы математических, естественнонаучных и общепрофессиональных дисциплин, необходимых для решения типовых задач в сфере организации технического обслуживания и ремонта транспортно- технологических комплексов Уметь - использовать знания основных законов математических и естественных наук для решения стандартных задач в сфереорганизации технического обслуживания и ремонта транспортно- технологических комплексов	5	Лекционные и лабораторные занятия Лекционные и лабораторные занятия	Контрольная работа, расчётная работа, тест, зачет Контрольная работа, расчетная работа, тест, зачет
профессионально й деятельности;		Владеть: - специальными программами и базами данных при разработке технологий и средств механизации в сфере организации технического обслуживания и ремонта транспортнотехнологических комплексов	5	Лекционные и лабораторные занятия	Контрольная работа, расчетная работа, тест, зачет

2.Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

2.1 Перечень оценочных средств

№ п/п	Наименование оценочного сред- ства	Краткая характеристика оценочного средства	Представление оце- ночного средства в ФОС
1.	Входной кон- троль	Средство проверки полученных знаний	Фонд заданий
2.	Контрольная работа	Средство проверки умений применять полученные знания для решения задач определенного типа по теме	Комплект контрольных заданий по вариантам
3.	Расчётная рабо- та	Средство проверки умений применять полученные знания для решения задач определенного типа по теме	Комплект заданий расчётных работ по вариантам
4.	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий

2.2 Программа оценивания контролируемой компетенции по дисциплине:

№	Контролируемые модули, разделы (темы) дисциплины	Код контро- лируемой компетенции	Наименование оценочного средства
1.	Гидростатика	ОПК-1	Контрольная работа, тест, зачет
2.	Гидродинамика	ОПК-1	Контрольная работа, тест, зачет
3.	Элементы гидравлического привода	ОПК-1	Расчётная работа, тест, зачёт
4.	Элементы пневматического привода	ОПК-1	Расчётная работа, тест, зачет
5.	Особенности построения расчётных моделей гидравлических систем	ОПК-1	Расчётная работа, тест, зачёт
6.	Особенности построения расчётных моделей пневматических систем	ОПК-1	Тест, зачёт

Описание показателей и критериев оценивания компетенций по дисциплине на различных этапах их формирования, описание шкал оценивания

Компетенция, эта-	Планируемые резуль-	Показатели и критерии оценивания результатов обучения				
пы освоения ком- петенции	таты обучения	Ниже порогового уровня	Пороговый уровень	Продвинутый уровень	Высокий уровень	
5 семестр	зачёт	Не зачтено	зачтено	зачтено	зачтено	
ОПК-1Способен	Знает:	Обучающийся не знает	Обучающийся имеет	Обучающийся твер-	Обучающийся знает осно-	
применять	теоретические основы	значительной части	знания только ос-	до знает материал,	вы математики, необхо-	
естественнонаучные	гидравлики и их расчет-	программного материа-	новного материала,	не допускает суще-	димые для изучения тех-	
и общеинженерные	ные формулы, законы	ла, плохо ориентирует-	но не усвоил его де-	ственных неточно-	нических дисциплин,	
знания, методы	движения жидкостей и	ся в терминологии, до-	талей, допускает не-	стей в ответе на во-	научную терминологию,	
математического	газов, физическую сущ-	пускает существенные	точности, недоста-	прос.	методы и приемы анализа	
анализа и	ность явлений, изучае-	ошибки.	точно правильные		решаемых задач, глубоко	
моделирования в	мых гидравликой; фор-		формулировки,		и прочно усвоил про-	
профессиональной	мы движения жидкости		нарушения логиче-		граммный материал, ис-	
деятельности;	и уравнения, которыми		ской последователь-		черпывающе, последова-	
	они описываются		ности в изложении		тельно, четко и логически	
			программного мате-		стройно его излагает, не	
			риала.		затрудняется с ответом	
					при видоизменении зада-	
					ний.	
	Умеет:	Не умеет использовать	В целом успешное,	В целом успешное	Сформированное умение	
	использовать на практи-	на практике основные	но не системное	умение использо-	использовать на практике	
	ке основные принципы и	принципы и общие по-	умение использовать	вать на практике	основные принципы и об-	
	общие положения со-	ложения современной	на практике основ-	основные принципы	щие положения современ-	
	временной гидравлики;	гидравлики; выполнять	ные принципы и об-	и общие положения	ной гидравлики; выпол-	
	выполнять эксперимен-	экспериментальные	щие положения со-	современной гид-	нять экспериментальные	
	тальные исследования по	исследования по опре-	временной гидрав-	равлики; выполнять	исследования по опреде-	
	определению параметров	делению параметров	лики; выполнять	экспериментальные	лению параметров работы	
	работы гидравлических	работы гидравлических	экспериментальные	исследования по	гидравлических машин,	
	машин	машин, допускает су-	исследования по	определению пара-	выполняет самостоятель-	
		щественные ошибки,	определению пара-	метров работы гид-	ную работу.	
		неуверенно, с больши-	метров работы гид-	равлических машин,		
1		ми затруднениями вы-	равлических машин,	допускает незначи-		

	T			T
	полняет самостоятель-	допускает ошибки, с	тельные ошибки,	
	ную работу, большин-	большими затрудне-	выполняет самосто-	
	ство предусмотренных	ниями выполняет	ятельную работу.	
	программой обучения	самостоятельную		
	учебных заданий не	работу.		
	выполнено.			
Владеет:	Обучающийся не вла-	В целом успешное,	В целом успешное,	Успешное и системное
методами построения	деет методами постро-	но не системное вла-	но содержащее от-	владение методами по-
математических моделей	ения математических	дение методами по-	дельные пробелы	строения математических
типовых задач в области	моделей типовых задач	строения математи-	или сопровождаю-	моделей типовых задач в
гидравлики; методами	в области гидравлики;	ческих моделей ти-	щееся отдельными	области гидравлики; ме-
проведения физических	методами проведения	повых задач в обла-	ошибками владение	тодами проведения физи-
измерений	физических измерений,	сти гидравлики; ме-	методами построе-	ческих измерений
	допускает существен-	тодами проведения	ния математических	
	ные ошибки, с больши-	физических измере-	моделей типовых	
	ми затруднениями вы-	ний	задач в области гид-	
	полняет самостоятель-		равлики; методами	
	ную работу, большин-		проведения физиче-	
	ство предусмотренных		ских измерений	
	программой обучения		*	
	учебных заданий не			
	выполнено			

З.ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХО-ДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯ-ТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕН-ЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

3.1 Входной контроль по «ГИДРАВЛИКА И ГИДРОПНЕВМОПРИВОД» Физика (свойства жидкости):

Задача 1. В пустой сосуд объемом 1 м³ налили 10 г воды при 20 °C и плотно закрыли. Будет ли в нем пар насыщенным? Какое минимальное количество воды надо налить, чтобы пар стал насыщенным?

Задача 2. Водяной пар, который находится в закрытом сосуде объёмом 5,76 л при 15 °C, оказывает давление 1280 Па. Каким будет его давление, если объем увеличится до 8 л, а температура повысится до 27 °C?

Задача 3. В калориметр, который содержит 400 г воды при 17 °C, пускают 10 г пара, температура которого 100 °C. Какая температура установилась в калориметре?

Задача 4. Алюминиевая деталь массой 560 г была нагрета до 200 °C и затем брошена в воду, температура которой 16 °C. При этом часть воды испарилась, а та часть, которая осталась, нагрелась до 50 °C. Сколько воды испарилось? Начальная масса воды 400 г.

Задача 5. В железном баке массой 5 кг находится 20 кг воды и 6 кг льда при 0 °C. Сколько водяного пара температурой 100 °C надо впустить в бак, чтобы растопить лед и нагреть воду до 70 °C?

Теоретическая механика (действие сил)

Задача 1. На рис. 1 показана схема копра, состоящего из двух одинаковых ферм, соединенных между собой шарниром В. Веса этих ферм Q1 и Q2 равны и приложены в точках D и E. На левую ферму действует горизонтальная сила P давления ветра. Определить реакции в шарнирах A, B и C при указанных на рисунке размерах.

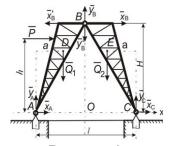


Рисунок 1.

Задача 2. Определить равнодействующую R^* двух сил P_1 и P_2 , модули которых соответственно равны P_1 =40 н и P_2 =80 н; сила P_1 направлена горизонтально вправо, а P_2 образует с P_1 угол α =120° (рис. 2, a).

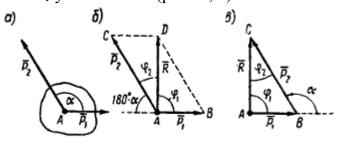


Рис. 26

Задача 3. Груз весом G=12 к Γ удерживается при помощи двух нитей, которые образуют с вертикалью (линией действия веса G) углы $\alpha=65^{\circ}$ и $\beta=90^{\circ}$. Определить усилия, растягивающие нити.

3.2. Комплект контрольных заданий по вариантам

- 1. По трубопроводу диаметром 270×10 мм перекачивается вода с расходом $150 \text{ м}^3/\text{час}$. Определить скорость воды в трубе и режим её движения.
- 2. Бензол с расходом 200 т/час и средней температуре 40°C поступает в трубный пучок одноходового кожухотрубчатого теплообменника, состоящего из 717 труб диаметром $d \times \delta = 20 \times 2$ мм. Определить скорость бензола в трубах трубного пучка и режим его движения в них.
- 3. Для охлаждения бензола (см. задачу 2) в межтрубное пространство кожухотрубчатого теплообменника с диаметром кожуха D=800 мм, диаметром труб $d\times\delta=20\times2$ мм и их числом 717 шт. подаётся вода со средней температурой 30°С. Скорость воды в межтрубном пространстве должна быть 0,5 м/с. Необходимо определить расход воды в м3/час и режим её движения.
- 4. На трубопроводе имеется переход с диаметра 50 мм на диаметр 100 мм (диаметры внутренние). По трубопроводу движется вода, имеющая температуру 20°С. Её скорость в узком сечении 1,5 м/с. Определить: 1. объёмный и массовый расходы воды; 2. скорость воды в широком сечении; 3. режимы течения в узком и широком сечениях.
- 5. Азот с расходом 6400 м3/час (при н.у.) подаётся в трубный пучок одноходового кожухотрубчатого теплообменника. Абсолютное давление газа 3 к Γ с/см2. Температура на входе в трубный пучок 120°C, на выходе 30°C. Число труб в аппарате 379 шт., их диаметр 16×1.5 мм. Определить:
- 1. скорость азота на входе в трубный пучок и на выходе из него;
- 2. режим движения азота на входе и на выходе.
- 6. В трубное пространство двухходового кожухотрубчатого теплообменника с общим числом труб 718 шт. подаётся метан с расходом 25 т/час. Диаметр труб 25×2 мм. Температура метана на входе в аппарат 15°C, на выходе 200°C. Среднее давление в аппарате 6 кГс/см2. Определить скорость и режим течения метана на входе в трубы и выходе из них.
- 7. Труба диаметром 200×10 мм переходит в трубу диаметром 50×5 мм, после чего поднимается вверх на 20 м. В нижнем и верхнем сечениях трубы установлены манометры. Нижний манометр показывает давление P1=5 к Γ с/см2.

По трубопроводу перекачивается вода с расходом 55 м3/час и температурой 40°C.

Определить показания верхнего манометра. Наличием сил вязкости пренебречь.

8. По трубопроводу длиной 15 км и диаметром 100×5 мм перекачивается бензол с расходом 10 т/час при средней температуре 200С. Стенки трубопровода гладкие.

Манометр, установленный в начале, показывает давление 5 ат. Определить показание манометра, установленного в конце трубопровода.

3.3 КОМПЛЕКТ ЗАДАНИЙ РАСЧЁТНЫХ РАБОТ ПО ВАРИАНТАМ

Задача № 1.

В отопительный котел поступает вода в объеме $V = 50 \text{ м}^3$ при температуре $t = 70^{\circ} \text{ C}$. Коэффициент температурного расширения воды $\beta = 0.00064 \text{ 1/град}$.

Сколько кубометров воды ΔV будет выходить из котла, если его нагреть до температуры $t_1 = 90^{\circ} C$?

Задача № 2.

В отопительной системе (котел, нагреватели и трубопроводы) жилого дома вмещается $V = 0.4 \text{ м}^3$ воды. Сколько воды войдет в расширитель при нагревании системы от 20 до 90° C? Справочные данные:

плотность воды при температуре 20° C: $\rho_{20} = 998 \ \kappa c/m^3$; плотность воды при температуре 90° C: $\rho_{90} = 965 \ \kappa c/m^3$.

Задача № 3.

Медный шар диаметром d = 100 мм весит в воздухе $G_1 = 45,7$ H, а при погружении в жидкость его вес стал равен $G_2 = 40,6$ H. Определить плотность жидкости.

Залача № 4.

Определить избыточное давление в забое скважины глубиной $h = 85 \, \text{м}$, которая заполнена глинистым раствором плотностью $\rho = 1250 \, \text{кг/м}^3$.

Задача № 5.

Водолазы при подъеме затонувшего судна работали в море на глубине $h = 50 \, m$. Определите давление воды на этой глубине и силу давления на скафандр водолаза, если площадь поверхности S скафандра равна $2.5 \, m^2$. Атмосферное давление считать равным $p_0 = 1.013 \times 10^5 \, \Pi a$, плотность воды $\rho = 1000 \, \kappa c/m^3$.

Задача № 6.

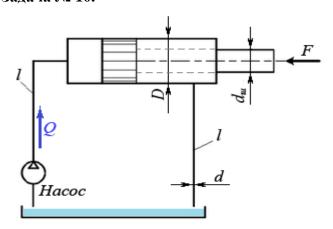
Баржу, имеющую форму параллелепипеда, загрузили песком в количестве 18 *тонн*. Ее осадка h_0 (глубина погружения) составила $h_0 = 0.5$ м. Определить массу пустой баржи, если ее размеры: длина l = 12 м; ширина b = 4 м; высота бортов h = 1 м.

Плотность воды принять равной $1000 \ \kappa c/m^3$.

Задача № 7.

Определить скорость перемещения поршня в гидроцилиндре, если диаметр поршня равен

 $d = 0.2 \, M$, а объемная подача жидкости из напорной магистрали $Q = 0.01 \, M^3/c$. Какое усилие можно получить на штоке поршня, если давление p в системе равно $2 \, M\Pi a$? Потери на трение и объемные потери не учитывать.

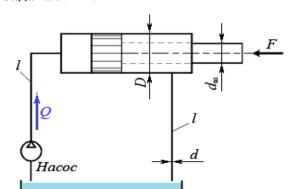

Задача № 8.

После сжатия воды в цилиндре под поршнем давление в ней увеличилось на 3 $\kappa\Pi a$. Необходимо определить конечный объем V_2 воды в цилиндре, если ее первоначальный объем составлял $V_1=2,55$ π . Коэффициент объемного сжатия воды $\beta_V=4.75\cdot 10^{-10}$ Πa^{-1} .

Задача № 9.

Баркас изготовлен в форме параллелепипеда шириной b = 1 м, длиной l = 3 м, высота бортов h = 0,3 м.

Определить, сколько человек могут разместиться в баркасе, не потопив его. Средняя масса человека $m_u = 70 \ \kappa z$, плотность воды $\rho = 1000 \ \kappa z/m^3$. Залача № 10.

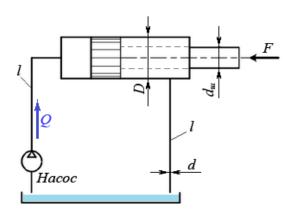


Определить скорость движения жидкости в подводящей линии и скорость поршня, если известны:

- диаметр трубопровода $d = 0.012 \, M$;
- диаметр поршня $D = 0.07 \, M$;
- подача насоса $Q = 1.7x10^{-3} M^{3/c}$.

Потери напора в местных сопротивлениях не учитывать.

Задача № 11.



Определить расход жидкости, вытесняемой из штоковой области и скорость движения жидкости в отводящей линии, если известны:

- скорость поршня $\mathbf{v}_{II} = 0.44 \ \text{м/c}$.
- диаметр трубопровода $d = 0.012 \, \text{м}$;

• диаметр поршня $D = 0.07 \, \text{м}$;

Потери напора в местных сопротивлениях не учитывать. Залача № 12.

Определить режимы движения рабочей жидкости в питающей и отводящей линии изображенного на схеме гидропривода.

Исходные данные:

Скорость движения жидкости в питающей линии

 ${\bf v_1}=15,04~{\it m/c},~$ скорость движения жидкости в отводящей линии ${\bf v_2}=10,08~{\it m/c},~$ вязкость жидкости ${\bf v}=0,5\times 10^{-4},~$ диаметр трубопроводов ${\bf d}=0,012~{\it m}.$

Критическое число Рейнольдса для рабочей жид-

кости равно $Re_{\kappa p} = 2320$

Потери напора в местных сопротивлениях и трубопроводах не учитывать.

3.4. КОМПЛЕКТ РАЗНОУРОВНЕВЫХ ТЕСТОВ Вариант – 1

Уровень «Знать»:

- 1.1. Что такое гидромеханика?
- а) наука о движении жидкости;
- б) наука о равновесии жидкостей;
- в) наука о взаимодействии жидкостей;
- г) наука о равновесии и движении жидкостей.
- 1.2. На какие разделы делится гидромеханика?
- а) гидротехника и гидрогеология;
- б) техническая механика и теоретическая механика;
- в) гидравлика и гидрология;
- г) механика жидких тел и механика газообразных тел.
- 1.3. Что такое жилкость?
- а) физическое вещество, способное заполнять пустоты;
- б) физическое вещество, способное изменять форму под действием сил;
- в) физическое вещество, способное изменять свой объем;
- г) физическое вещество, способное течь.
- 1.4. Какая из этих жидкостей не является капельной?
- а) ртуть;
- б) керосин;
- в) нефть;
- г) азот.
- 1.5. Какая из этих жидкостей не является газообразной?
- а) жидкий азот;
- б) ртуть;
- в) водород;
- г) кислород;
- 1.6. Реальной жидкостью называется жидкость
- а) не существующая в природе;
- б) находящаяся при реальных условиях;
- в) в которой присутствует внутреннее трение;
- г) способная быстро испаряться.

- 1.7. Идеальной жидкостью называется
- а) жидкость, в которой отсутствует внутреннее трение;
- б) жидкость, подходящая для применения;
- в) жидкость, способная сжиматься;
- г) жидкость, существующая только в определенных условиях.
- 1.8. На какие виды разделяют действующие на жидкость внешние силы?
- а) силы инерции и поверхностного натяжения;
- б) внутренние и поверхностные;
- в) массовые и поверхностные;
- г) силы тяжести и давления.
- 1.9. Какие силы называются массовыми?
- а) сила тяжести и сила инерции;
- б) сила молекулярная и сила тяжести;
- в) сила инерции и сила гравитационная;
- г) сила давления и сила поверхностная.
- 1.10. Какие силы называются поверхностными?
- а) вызванные воздействием объемов, лежащих на поверхности жидкости;
- б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления.
- 1.11. Жидкость находится под давлением. Что это означает?
- а) жидкость находится в состоянии покоя;
- б) жидкость течет;
- в) на жидкость действует сила;
- г) жидкость изменяет форму.
- 1.12. В каких единицах измеряется давление в системе измерения СИ?
- а) в паскалях;
- б) в джоулях;
- в) в барах;
- г) в стоксах.
- 1.13. Если давление отсчитывают от абсолютного нуля, то его называют:
- а) давление вакуума;
- б) атмосферным;
- в) избыточным;
- г) абсолютным.
- 1.14. Если давление отсчитывают от относительного нуля, то его называют:
- а) абсолютным;
- б) атмосферным;
- в) избыточным;
- г) давление вакуума.

Уровень «Уметь»:

- 1.15. Если давление ниже относительного нуля, то его называют:
- а) абсолютным;
- б) атмосферным;
- в) избыточным;
- г) давление вакуума.
- 1.16. Какое давление обычно показывает манометр?
- а) абсолютное;
- б) избыточное;
- в) атмосферное;
- г) давление вакуума.
- 1.17. Чему равно атмосферное давление при нормальных условиях?

- a) 100 MΠa;
- б) 100 кПа;
- в) 10 ГПа;
- г) 1000 Па.

1.18. Давление определяется

- а) отношением силы, действующей на жидкость к площади воздействия;
- б) произведением силы, действующей на жидкость на площадь воздействия;
- в) отношением площади воздействия к значению силы, действующей на жидкость;
- г) отношением разности действующих усилий к площади воздействия.
- 1.19. Массу жидкости заключенную в единице объема называют
- а) весом;
- б) удельным весом;
- в) удельной плотностью;
- г) плотностью.
- 1.20. Вес жидкости в единице объема называют
- а) плотностью;
- б) удельным весом;
- в) удельной плотностью;
- г) весом.
- 1.21. При увеличении температуры удельный вес жидкости
- а) уменьшается;
- б) увеличивается;
- г) сначала увеличивается, а затем уменьшается;
- в) не изменяется.
- 1.22. Сжимаемость это свойство жидкости
- а) изменять свою форму под действием давления;
- б) изменять свой объем под действием давления;
- в) сопротивляться воздействию давления, не изменяя свою форму;
- г) изменять свой объем без воздействия давления.
- 1.23. Сжимаемость жидкости характеризуется
- а) коэффициентом Генри;
- б) коэффициентом температурного сжатия;
- в) коэффициентом поджатия;
- г) коэффициентом объемного сжатия.

Уровень «Владеть»:

1.24. Коэффициент объемного сжатия определяется по формуле

$$\mathbf{a)} \ \beta_V = -\frac{1}{dV} \frac{V}{dP}$$

a)
$$\beta_V = -\frac{1}{dV} \frac{V}{dP};$$
 6) $\beta_V = -\frac{1}{V} \frac{dV}{dP};$
B) $\beta_V = \frac{1}{V} \frac{dP}{dV};$ 7) $\beta_V = -\frac{1}{P} \frac{dP}{dV}.$

$$\mathbf{B}) \; \beta_V = \frac{1}{V} \frac{dP}{dV};$$

$$\mathbf{r}) \ \beta_V = -\frac{1}{P} \frac{dP}{dV}$$

- 1.29. Вязкость жидкости это
- а) способность сопротивляться скольжению или сдвигу слоев жидкости;
- б) способность преодолевать внутреннее трение жидкости;
- в) способность преодолевать силу трения жидкости между твердыми стенками;
- г) способность перетекать по поверхности за минимальное время.
- 1.30. Текучестью жидкости называется
- а) величина прямо пропорциональная динамическому коэффициенту вязкости;
- б) величина обратная динамическому коэффициенту вязкости;
- в) величина обратно пропорциональная кинематическому коэффициенту вязкости;
- г) величина пропорциональная градусам Энглера.
- 1.31. Вязкость жидкости не характеризуется
- а) кинематическим коэффициентом вязкости;

б) динамическим коэффициентом вязкости;
в) градусами Энглера;
г) статическим коэффициентом вязкости.
1.32. Кинематический коэффициент вязкости обозначается греческой буквой
a) v;
б) µ;
B) η;
Γ) τ .
1.33. Динамический коэффициент вязкости обозначается греческой буквой
а) у;
δ) μ;
B) η;
Γ) τ .
1.34. В вискозиметре Энглера объем испытуемой жидкости, истекающего через капилляр ра
вен
а) 300 см3;
б) 200 см3;
в) 200 м3;
г) 200 мм3.
1.35. Вязкость жидкости при увеличении температуры
а) увеличивается;
б) уменьшается;
в) остается неизменной;
г) сначала уменьшается, а затем остается постоянной.
1.36. Вязкость газа при увеличении температуры
а) увеличивается;
б) уменьшается;
в) остается неизменной;
г) сначала уменьшается, а затем остается постоянной.
1.37. Выделение воздуха из рабочей жидкости называется
а) парообразованием;
б) газообразованием;
в) пенообразованием;
г) газовыделение.
1.38. При окислении жидкостей не происходит
а) выпадение смол;
б) увеличение вязкости;
в) изменения цвета жидкости;
г) выпадение шлаков.
1.39. Интенсивность испарения жидкости не зависит от
а) от давления;
б) от ветра;
в) от температуры;
г) от объема жидкости.
1.40. Закон Генри, характеризующий объем растворенного газа в жидкости записывается в
виде $1 dV$ $\sim 1 dt$
a) $\beta_t = -\frac{1}{2\pi} \frac{\alpha r}{r}$; 6) $\beta_t = \frac{1}{2\pi} \frac{\alpha r}{r}$;
V dt $V dV$
a) $\beta_t = -\frac{1}{V} \frac{dV}{dt};$ 6) $\beta_t = \frac{1}{V} \frac{dt}{dV};$ B) $\beta_t = \frac{1}{V} \frac{dV}{dt};$ r) $\beta_t = \frac{1}{t} \frac{dV}{dt}.$
B) $\beta_t = \frac{\pi}{\tau_t} \frac{\pi}{t}$; Γ) $\beta_t = \frac{\pi}{t} \frac{\pi}{t}$.
V dt t dt 11 Var nagi pagnage naggent na rottom ta данител гилиарника?

41. Как называются разделы, на которые делится гидравлика?

- а) гидростатика и гидромеханика;
- б) гидромеханика и гидродинамика;
- в) гидростатика и гидродинамика;
- г) гидрология и гидромеханика.
- 42. Раздел гидравлики, в котором рассматриваются законы равновесия жидкости называется
- а) гидростатика;
- б) гидродинамика;
- в) гидромеханика;
- г) гидравлическая теория равновесия.
- 43. Гидростатическое давление это давление присутствующее
- а) в движущейся жидкости;
- б) в покоящейся жидкости;
- в) в жидкости, находящейся под избыточным давлением;
- г) в жидкости, помещенной в резервуар.
- **44.** Какие частицы жидкости испытывают наибольшее напряжение сжатия от действия гидростатического давления?
- а) находящиеся на дне резервуара;
- б) находящиеся на свободной поверхности;
- в) находящиеся у боковых стенок резервуара;
- г) находящиеся в центре тяжести рассматриваемого объема жидкости.
- 45. Среднее гидростатическое давление, действующее на дно резервуара равно
- а) произведению глубины резервуара на площадь его дна и плотность;
- б) произведению веса жидкости на глубину резервуара;
- в) отношению объема жидкости к ее плоскости;
- г) отношению веса жидкости к площади дна резервуара.
- 46. Первое свойство гидростатического давления гласит
- а) в любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует от рассматриваемого объема;
- б) в любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема;
- в) в каждой точке жидкости гидростатическое давление действует параллельно площадке касательной к выделенному объему и направлено произвольно;
- г) гидростатическое давление неизменно во всех направлениях и всегда перпендикулярно в точке его приложения к выделенному объему.
- 47. Второе свойство гидростатического давления гласит
- а) гидростатическое давление постоянно и всегда перпендикулярно к стенкам резервуара;
- б) гидростатическое давление изменяется при изменении местоположения точки;
- в) гидростатическое давление неизменно в горизонтальной плоскости;
- г) гидростатическое давление неизменно во всех направлениях.
- 48. Третье свойство гидростатического давления гласит
- а) гидростатическое давление в любой точке не зависит от ее координат в пространстве;
- б) гидростатическое давление в точке зависит от ее координат в пространстве;
- в) гидростатическое давление зависит от плотности жидкости;
- г) гидростатическое давление всегда превышает давление, действующее на свободную поверхность жидкости.
- **49.** Уравнение, позволяющее найти гидростатическое давление в любой точке рассматриваемого объема называется
- а) основным уравнением гидростатики;
- б) основным уравнением гидродинамики;
- в) основным уравнением гидромеханики;
- г) основным уравнением гидродинамической теории.
- 50. Основное уравнение гидростатики позволяет

- а) определять давление, действующее на свободную поверхность;
- б) определять давление на дне резервуара;
- в) определять давление в любой точке рассматриваемого объема;
- г) определять давление, действующее на погруженное в жидкость тело

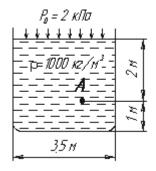
ВАРИАНТ - 2

Уровень «Знать»:

1. Среднее гидростатическое давление, действующее на дно резервуара определяется по

a)
$$P_{cp} = \frac{G}{V}$$
; 6) $P_{cp} = \frac{V}{P_{amm}}$; B) $P_{cp} = \frac{V}{G}$; r) $P_{cp} = \frac{P}{S}$.

2. Основное уравнение гидростатического давления записывается в виде **a)** $P = P_{amm} + \rho g h$; **b)** $P = P_0 - \rho g h$;


a)
$$P = P_{ama} + \rho g h$$
;

6)
$$P = P_0 - \rho g h$$
;

B)
$$P = P_0 + \rho g h$$
;

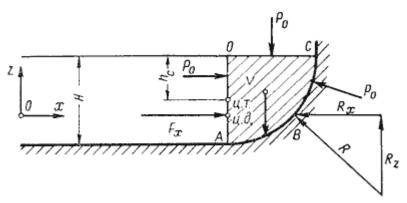
r)
$$P = P_0 + \rho y h$$
.

- 3. Основное уравнение гидростатики определяется
- а) произведением давления газа над свободной поверхностью к площади свободной поверхности;
- б) разностью давления на внешней поверхности и на дне сосуда;
- в) суммой давления на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев;
- г) отношением рассматриваемого объема жидкости к плотности и глубине погружения точки.
- 4. Чему равно гидростатическое давление при глубине погружения точки, равной нулю
- а) давлению над свободной поверхностью;
- б) произведению объема жидкости на ее плотность;
- в) разности давлений на дне резервуара и на его поверхности;
- г) произведению плотности жидкости на ее удельный вес.
- 5. "Давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково"
- а) это закон Ньютона:
- б) это закон Паскаля;
- в) это закон Никурадзе;
- г) это закон Жуковского.
- 6. Закон Паскаля гласит
- а) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково;
- б) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям согласно основному уравнению гидростатики;
- в) давление, приложенное к внешней поверхности жидкости, увеличивается по мере удаления от свободной поверхности;
- г) давление, приложенное к внешней поверхности жидкости равно сумме давлений, приложенных с других сторон рассматриваемого объема жидкости.
- 7. Поверхность уровня это
- а) поверхность, во всех точках которой давление изменяется по одинаковому закону;
- б) поверхность, во всех точках которой давление одинаково;
- в) поверхность, во всех точках которой давление увеличивается прямо пропорционально удалению от свободной поверхности;
- г) свободная поверхность, образующаяся на границе раздела воздушной и жидкой сред при относительном покое жидкости.
- 8. Чему равно гидростатическое давление в точке А?

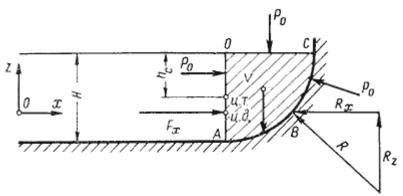
- a) 19,62 κΠa;
- б) 31,43 кПа;
- в) 21,62 кПа;
- г) 103 кПа.
- 9. Как приложена равнодействующая гидростатического давления относительно центра тяжести прямоугольной боковой стенки резервуара?
- а) ниже;
- б) выше;
- в) совпадает с центром тяжести;
- г) смещена в сторону.
- 10. Равнодействующая гидростатического давления в резервуарах с плоской наклонной стенкой равна
- a) $F = y_D S$;
- 6) $F = \frac{\gamma hS}{2}\cos\alpha$;
- B) $F = \rho Sh_a$;
- $\Gamma) \ F = \frac{\gamma H}{2} S.$

Уровень «Уметь»:

11. Точка приложения равнодействующей гидростатического давления лежит ниже центра тяжести плоской боковой поверхности резервуара на расстоянии

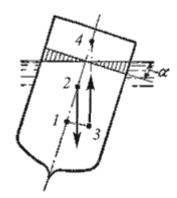

a)
$$\ell = \frac{J_{Ax}}{\ell_{y.m.}S};$$

$$6) \ell = J_{Ax} \frac{\ell_{ym}}{S};$$


B)
$$\ell = \frac{S}{J_{Ax}\ell_{y,m}};$$
 Γ) $\ell = S J_{Ax}\ell_{y,m}.$

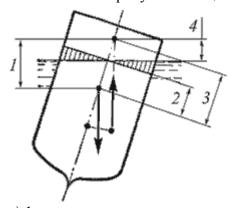
$$\Gamma) \ell = S J_{Ax} \ell_{y.m.}$$

12. Сила гидростатического давления на цилиндрическую боковую поверхность по оси Ох равна



- a) $F_z = \frac{\gamma}{V}$;
- 6) $F_z = \gamma V$;
- B) $F_{\tau} = \gamma V H$;
- r) $F_z = \gamma S_z h_c$.
- 13. Сила гидростатического давления на цилиндрическую боковую поверхность по оси Ох

- a) $F_z = \frac{\gamma}{V}$;
- 6) $F_z = \gamma V$;
- в) $F_z = \gamma V H$;
- г) $F_z = \gamma S_z h_c$. 14. Равнодействующая гидростатического давления на цилиндрическую боковую поверх-
- a) $F = \sqrt{F_x^2 + F_z^2 + F_y^2}$; 6) $F = \sqrt{F_x^2 F_z^2 F_y^2}$;


- в) $F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$; г) $F = \sqrt[3]{\left(F_x + F_z + F_y\right)^2}$. 15. Сила, действующая со стороны жидкости на погруженное в нее тело равна
- a) $P_{esim} = \rho_{mena} g V_{mena}$;
- 6) $P_{esom} = \rho_{xe}gy$;
- B) $P_{esim} = \rho_{xe}gh_{nozp};$
- r) $P_{esum} = \rho_{xe}gV_{noep}$
- 16. Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется
- а) устойчивостью;
- б) остойчивостью;
- в) плавучестью;
- г) непотопляемостью.
- 17. Укажите на рисунке местоположение центра водоизмещения

- a) 1;
- б) 2;
- в) 3;
- г) 4.

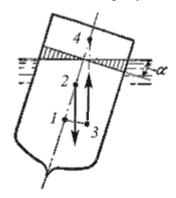
Уровень «Владеть»:

18. Укажите на рисунке метацентрическую высоту

- a) 1;
- б) 2;
- в) 3;
- г) 4.

19. Для однородного тела, плавающего на поверхности справедливо соотношение

$$\mathbf{a)} \; \frac{V_{nozp}}{V_m} = \frac{\rho_m}{\rho_{\infty}} \; ;$$


$$6) \ \frac{V_{nozp}}{\rho_{\infty}} = \frac{V_m}{\rho_m};$$

$$\mathbf{B}) \; \frac{V_m}{V_{nozp}} = \frac{\rho_m}{\rho_{\mathcal{K}}};$$

$$\Gamma) \frac{V_{nozp}}{V_m} = \frac{\rho_{\infty}}{\rho_m}.$$

- 20. Вес жидкости, взятой в объеме погруженной части судна называется
- а) погруженным объемом;
- б) водоизмещением;
- в) вытесненным объемом;
- г) водопоглощением.
- 21. Водоизмещение это
- а) объем жидкости, вытесняемый судном при полном погружении;
- б) вес жидкости, взятой в объеме судна;

- в) максимальный объем жидкости, вытесняемый плавающим судном;
- г) вес жидкости, взятой в объеме погруженной части судна.
- 22. Укажите на рисунке местоположение метацентра

- a) 1;
- б) 2;
- в) 3;
- г) 4.
- **23.** Если судно возвращается в исходное положение после действия опрокидывающей силы, метацентрическая высота
- а) имеет положительное значение;
- б) имеет отрицательное значение;
- в) равна нулю;
- г) увеличивается в процессе возвращения судна в исходное положение.
- 24. Если судно после воздействия опрокидывающей силы продолжает дальнейшее опрокидывание, то метацентрическая высота
- а) имеет положительное значение;
- б) имеет отрицательное значение;
- в) равна нулю;
- г) уменьшается в процессе возвращения судна в исходное положение.
- **25.** Если судно после воздействия опрокидывающей силы не возвращается в исходное положение и не продолжает опрокидываться, то метацентрическая высота
- а) имеет положительное значение;
- б) имеет отрицательное значение;
- в) равна нулю;
- г) уменьшается в процессе возвращения судна в исходное положение.
- **26.** По какому критерию определяется способность плавающего тела изменять свое дальнейшее положение после опрокидывающего воздействия
- а) по метацентрической высоте;
- б) по водоизмещению;
- в) по остойчивости;
- г) по оси плавания.
- **27.** Проведенная через объем жидкости поверхность, во всех точках которой давление одинаково, называется
- а) свободной поверхностью;
- б) поверхностью уровня;
- в) поверхностью покоя;
- г) статической поверхностью.
- 28. Относительным покоем жидкости называется
- а) равновесие жидкости при постоянном значении действующих на нее сил тяжести и инерпии:
- б) равновесие жидкости при переменном значении действующих на нее сил тяжести и инер-

шии:

- в) равновесие жидкости при неизменной силе тяжести и изменяющейся силе инерции;
- г) равновесие жидкости только при неизменной силе тяжести.
- 29. Как изменится угол наклона свободной поверхности в цистерне, двигающейся с постоянным ускорением
- а) свободная поверхность примет форму параболы;
- б) будет изменяться;
- в) свободная поверхность будет горизонтальна;
- г) не изменится.
- 30. Во вращающемся цилиндрическом сосуде свободная поверхность имеет форму
- а) параболы;
- б) гиперболы;
- в) конуса;
- г) свободная поверхность горизонтальна.
- **31.** При увеличении угловой скорости вращения цилиндрического сосуда с жидкостью, действующие на жидкость силы изменяются следующим образом
- а) центробежная сила и сила тяжести уменьшаются;
- б) центробежная сила увеличивается, сила тяжести остается неизменной;
- в) центробежная сила остается неизменной, сила тяжести увеличивается;
- г) центробежная сила и сила тяжести не изменяются.
- 32. Площадь поперечного сечения потока, перпендикулярная направлению движения называется
- а) открытым сечением;
- б) живым сечением;
- в) полным сечением;
- г) площадь расхода.
- 33. Часть периметра живого сечения, ограниченная твердыми стенками называется
- а) мокрый периметр;
- б) периметр контакта;
- в) смоченный периметр;
- г) гидравлический периметр.
- 34. Объем жидкости, протекающий за единицу времени через живое сечение называется
- а) расход потока;
- б) объемный поток;
- в) скорость потока;
- г) скорость расхода.
- 35. Отношение расхода жидкости к площади живого сечения называется
- а) средний расход потока жидкости;
- б) средняя скорость потока;
- в) максимальная скорость потока;
- г) минимальный расход потока.
- 36. Отношение живого сечения к смоченному периметру называется
- а) гидравлическая скорость потока;
- б) гидродинамический расход потока;
- в) расход потока;
- г) гидравлический радиус потока.
- 37 Если при движении жидкости в данной точке русла давление и скорость не изменяются,
- то такое движение называется
- а) установившемся;
- б) неустановившемся;
- в) турбулентным установившимся;
- г) ламинарным неустановившемся.

20. П
38. Движение, при котором скорость и давление изменяются не только от координат про-
странства, но и от времени называется
а) ламинарным;
б) стационарным;
в) неустановившимся;
г) турбулентным.
39. Расход потока обозначается латинской буквой
a) Q ;
6) V;
B) P;
Γ) H .
40. Средняя скорость потока обозначается буквой
a) χ;
6) V ;
B) v;
Γ) ω .
41. Живое сечение обозначается буквой
a) W ;
δ) η;
B) ω;
Γ) φ .
42. При неустановившемся движении, кривая, в каждой точке которой вектора скорости в
данный момент времени направлены по касательной называется
а) траектория тока;
б) трубка тока;
в) струйка тока;
г) линия тока.
43. Трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сече-
нием называется
а) трубка тока;
б) трубка потока;
в) линия тока;
г) элементарная струйка.
44. Элементарная струйка - это
а) трубка потока, окруженная линиями тока;
б) часть потока, заключенная внутри трубки тока;
в) объем потока, движущийся вдоль линии тока;
г) неразрывный поток с произвольной траекторией.
45. Течение жидкости со свободной поверхностью называется
а) установившееся;
б) напорное;
в) безнапорное;
г) свободное.
46. Течение жидкости без свободной поверхности в трубопроводах с повышенным или по-
ниженным давлением называется
а) безнапорное;
б) напорное;
в) неустановившееся;
г) несвободное (закрытое).
47. Уравнение неразрывности течений имеет вид
a) $\omega_1 \upsilon_2 = \omega_2 \upsilon_1 = \text{const};$
$\delta) \omega_1 v_1 = \omega_2 v_2 = \text{const};$

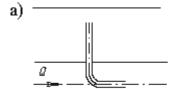
B) $\omega_1\omega_2 = \upsilon_1\upsilon_2 = \text{const};$

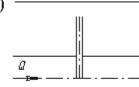
$$\Gamma$$
) $\omega_1 / \upsilon_1 = \omega_2 / \upsilon_2 = \text{const.}$

48. Уравнение Бернулли для идеальной жидкости имеет вид

a);
$$z_1 + \frac{P_1}{2g} + \frac{v_1^2}{\rho g} = z_2 + \frac{P_2}{2g} + \frac{v_2^2}{\rho g}$$

6)
$$z_1 + \frac{P_2}{\rho g} + \frac{v_1^2}{2g} = z_2 + \frac{P_1}{\rho g} + \frac{v_2^2}{2g} + \sum h;$$


B)
$$z_1 + \frac{P_1}{Q\sigma} + \frac{U_1^2}{2\sigma} = z_2 + \frac{P_2}{Q\sigma} + \frac{U_2^2}{2\sigma}$$


r)
$$z_1 + \frac{v_1}{\rho g} + \alpha_1 \frac{R_1^2}{2g} = z_2 + \frac{v_2}{\rho g} + \alpha_2 \frac{R_2^2}{2g}$$

49. На каком рисунке трубка Пито установлена правильно

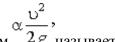
50. Уравнение Бернулли для реальной жидкости имеет вид

a)
$$z_1 + \alpha_1 \frac{P_1}{\rho g} + \frac{\upsilon_1^2}{2g} = z_2 + \alpha_2 \frac{P_2}{\rho g} + \frac{\upsilon_2^2}{2g} - \sum h;$$

6)
$$z_1 + \frac{P_1}{\rho_{\mathcal{S}}} + \frac{v_1^2}{2g} = z_2 + \frac{P_2}{\rho_{\mathcal{S}}} + \frac{v_2^2}{2g} + \sum h;$$

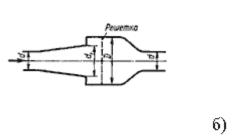
B)
$$z_1 + \frac{P_1}{2g} + \alpha_1 \frac{\upsilon_1^2}{\rho g} = z_2 + \frac{P_2}{2g} + \alpha_2 \frac{\upsilon_2^2}{\rho g} + \sum h^{\frac{1}{2}}$$

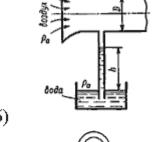
r)
$$z_1 + \frac{P_1}{\rho g} + \alpha_1 \frac{\upsilon_1^2}{2g} = z_2 + \frac{P_2}{\rho g} + \alpha_2 \frac{\upsilon_2^2}{2g} + \sum h$$

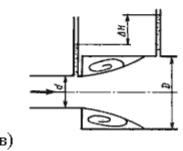

ВАРИАНТ -3

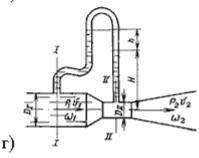
Уровень «Знать»:

- 1. Член уравнения Бернулли, обозначаемый буквой z, называется
- а) геометрической высотой;
- б) пьезометрической высотой;
- в) скоростной высотой;
- г) потерянной высотой.


P


- 2. Член уравнения Бернулли, обозначаемый выражением РЕ называется
- а) скоростной высотой;
- б) геометрической высотой;
- в) пьезометрической высотой;
- г) потерянной высотой.




- **3.** Член уравнения Бернулли, обозначаемый выражением 2*g* называется
- а) пьезометрической высотой;
- б) скоростной высотой;
- в) геометрической высотой;
- г) такого члена не существует.
- 4. Уравнение Бернулли для двух различных сечений потока дает взаимосвязь между
- а) давлением, расходом и скоростью;
- б) скоростью, давлением и коэффициентом Кориолиса;
- в) давлением, скоростью и геометрической высотой;
- г) геометрической высотой, скоростью, расходом.
- 5. Коэффициент Кориолиса в уравнении Бернулли характеризует
- а) режим течения жидкости;
- б) степень гидравлического сопротивления трубопровода;
- в) изменение скоростного напора;
- г) степень уменьшения уровня полной энергии.
- 6. Показание уровня жидкости в трубке Пито отражает
- а) разность между уровнем полной и пьезометрической энергией;
- б) изменение пьезометрической энергии;
- в) скоростную энергию;
- г) уровень полной энергии.
- 7. Потерянная высота характеризует
- а) степень изменения давления;
- б) степень сопротивления трубопровода;
- в) направление течения жидкости в трубопроводе;
- г) степень изменения скорости жидкости.
- 8. Линейные потери вызваны
- а) силой трения между слоями жидкости;
- б) местными сопротивлениями;
- в) длиной трубопровода;
- г) вязкостью жидкости.
- 9. Местные потери энергии вызваны
- а) наличием линейных сопротивлений;
- б) наличием местных сопротивлений;
- в) массой движущейся жидкости;
- г) инерцией движущейся жидкости.
- **10.** На участке трубопровода между двумя его сечениями, для которых записано уравнение Бернулли можно установить следующие гидроэлементы
- а) фильтр, отвод, гидромотор, диффузор;
- б) кран, конфузор, дроссель, насос;
- в) фильтр, кран, диффузор, колено;
- г) гидроцилиндр, дроссель, клапан, сопло.
- 11. Укажите правильную запись
- a) $h_{nuh} = h_{nom} + h_{mecm}$;
- δ) $h_{Mecm} = h_{Лин} + h_{nom}$;
- B) $h_{nom} = h_{\pi u H} h_{mecm}$;
- Γ) $h_{\it лин} = h_{\it nom}$ $h_{\it Mecm}$.
- 12. Для измерения скорости потока используется
- а) трубка Пито;
- б) пьезометр;
- в) вискозиметр;
- г) трубка Вентури.

- 13. Для измерения расхода жидкости используется
- а) трубка Пито;
- б) расходомер Пито;
- в) расходомер Вентури;
- г) пьезометр.
- 14. Укажите, на каком рисунке изображен расходомер Вентури

15. Установившееся движение характеризуется уравнениями

- a) v = f(x, y, z, t); $P = \varphi(x, y, z)$
- $\delta(x) = f(x, y, z, t); P = \varphi(x, y, z, t)$
- B)v = f(x, y, z); $P = \varphi(x, y, z, t)$
- Γ) $\upsilon = f(x, y, z)$; $P = \varphi(x, y, z)$

Уровень «Уметь»:

- 16. Расход потока измеряется в следующих единицах
- a) m³;

a)

- б) м²/с;
- B) M^3 C;
- Γ) M^3/c .
- **17.** Для двух сечений трубопровода известны величины P_1 , v_1 , z_1 и z_2 . Можно ли определить давление P_2 и скорость потока v_2 ?
- а) можно;
- б) можно, если известны диаметры d_1 и d_2 ;
- в) можно, если известен диаметр трубопровода d_1 ;
- г) нельзя.
- 18. Неустановившееся движение жидкости характеризуется уравнением
- a) v = f(x, y, z,); $P = \varphi(x, y, z)$
- δ)υ = f(x, y, z); P = φ(x, y, z, t)
- B)v = f(x, y, z, t); $P = \varphi(x, y, z, t)$
- Γ)v = f(x, y, z, t); $P = \varphi(x, y, z)$
- **19.** Значение коэффициента Кориолиса для ламинарного режима движения жидкости равно а) 1,5;
- б) 2;
- в) 3;
-) 1
- r) 1.
- **20.** Значение коэффициента Кориолиса для турбулентного режима движения жидкости равно а) 1.5:
- б) 2;

- в) 3;
- г) 1.
- 21. По мере движения жидкости от одного сечения к другому потерянный напор
- а) увеличивается;
- б) уменьшается;
- в) остается постоянным;
- г) увеличивается при наличии местных сопротивлений.
- **22.** Уровень жидкости в трубке Пито поднялся на высоту H = 15 см. Чему равна скорость жидкости в трубопроводе
- a) 2,94 m/c;
- б) 17,2 м/c;
- в) 1.72 м/c;
- Γ) 8,64 M/c
- 22. Гидравлическое сопротивление это
- а) сопротивление жидкости к изменению формы своего русла;
- б) сопротивление, препятствующее свободному проходу жидкости;
- в) сопротивление трубопровода, которое сопровождается потерями энергии жидкости;
- г) сопротивление, при котором падает скорость движения жидкости по трубопроводу.
- 24. Что является источником потерь энергии движущейся жидкости?
- а) плотность;
- б) вязкость;
- в) расход жидкости;
- г) изменение направления движения.
- 25. На какие виды делятся гидравлические сопротивления?
- а) линейные и квадратичные;
- б) местные и нелинейные;
- в) нелинейные и линейные;
- г) местные и линейные.
- 26. Влияет ли режим движения жидкости на гидравлическое сопротивление
- а) влияет;
- б) не влияет;
- в) влияет только при определенных условиях;
- г) при наличии местных гидравлических сопротивлений.
- 27. Ламинарный режим движения жидкости это
- а) режим, при котором частицы жидкости перемещаются бессистемно только у стенок трубопровода;
- б) режим, при котором частицы жидкости в трубопроводе перемещаются бессистемно;
- в) режим, при котором жидкость сохраняет определенный строй своих частиц;
- г) режим, при котором частицы жидкости двигаются послойно только у стенок трубопровода.
- 28. Турбулентный режим движения жидкости это
- а) режим, при котором частицы жидкости сохраняют определенный строй (движутся послойно);
- б) режим, при котором частицы жидкости перемещаются в трубопроводе бессистемно;
- в) режим, при котором частицы жидкости двигаются как послойно так и бессистемно;
- г) режим, при котором частицы жидкости двигаются послойно только в центре трубопровола.

Уровень «Владеть»:

- **29.** При каком режиме движения жидкости в трубопроводе пульсация скоростей и давлений не происходит?
- а) при отсутствии движения жидкости;
- б) при спокойном;

- в) при турбулентном;
- г) при ламинарном.
- **30.** При каком режиме движения жидкости в трубопроводе наблюдается пульсация скоростей и давлений в трубопроводе?
- а) при ламинарном;
- б) при скоростном;
- в) при турбулентном;
- г) при отсутствии движения жидкости.
- 31. При ламинарном движении жидкости в трубопроводе наблюдаются следующие явления
- а) пульсация скоростей и давлений;
- б) отсутствие пульсации скоростей и давлений;
- в) пульсация скоростей и отсутствие пульсации давлений;
- г) пульсация давлений и отсутствие пульсации скоростей.
- 32. При турбулентном движении жидкости в трубопроводе наблюдаются следующие явления
- а) пульсация скоростей и давлений;
- б) отсутствие пульсации скоростей и давлений;
- в) пульсация скоростей и отсутствие пульсации давлений;
- г) пульсация давлений и отсутствие пульсации скоростей.
- 33. Где скорость движения жидкости максимальна при турбулентном режиме?
- а) у стенок трубопровода;
- б) в центре трубопровода;
- в) может быть максимальна в любом месте;
- г) все частицы движутся с одинаковой скоростью.
- 34. Где скорость движения жидкости максимальна при ламинарном режиме?
- а) у стенок трубопровода;
- б) в центре трубопровода;
- в) может быть максимальна в любом месте;
- г) в начале трубопровода.
- 35. Режим движения жидкости в трубопроводе это процесс
- а) обратимый;
- б) необратимый;
- в) обратим при постоянном давлении;
- г) необратим при изменяющейся скорости.
- **36.** Критическая скорость, при которой наблюдается переход от ламинарного режима к турбулентному определяется по формуле

булентному определяется по формуле

а)
$$U_{xp} = \frac{Q_{xp}}{d \cdot \mathbf{Re}_{xp}};$$

б) $U_{yp} = \frac{Q_{yp}}{d \cdot \mathbf{Re}_{yp}};$

$$\delta)_{v_{xp}} = \frac{d}{v} \cdot \mathbf{Re}_{xp};$$

$$\mathbf{b)}_{\mathbf{v}_{np}} = \frac{\mathbf{v}d}{\mathbf{Re}_{np}};$$

$$\mathbf{r}) \ \mathbf{v}_{\mathbf{x}\mathbf{p}} = \frac{\mathbf{v}}{d} \cdot \mathbf{R} \mathbf{e}_{\mathbf{x}\mathbf{p}} \cdot$$

37. Число Рейнольдса определяется по формуле

a) Re =
$$\frac{vd}{\mu}$$
;

6)
$$Re = \frac{vd}{v}$$
;

B) Re =
$$\frac{vd}{v}$$
;

r)
$$Re = \frac{v\ell}{v}$$
.

- 38. От каких параметров зависит значение числа Рейнольдса?
- а) от диаметра трубопровода, кинематической вязкости жидкости и скорости движения жидкости:
- б) от расхода жидкости, от температуры жидкости, от длины трубопровода;
- в) от динамической вязкости, от плотности и от скорости движения жидкости;
- г) от скорости движения жидкости, от шероховатости стенок трубопровода, от вязкости жид-

TAO	07	LIT

- 39. Критическое значение числа Рейнольдса равно
- a) 2300;
- б) 3200;
- в) 4000;
- г) 4600.
- **40**. При Re > 4000 режим движения жидкости
- а) ламинарный;
- б) переходный;
- в) турбулентный;
- г) кавитационный.
- **41.** При Re < 2300 режим движения жидкости
- а) кавитационный;
- б) турбулентный;
- в) переходный;
- г) ламинарный.
- **42.** При 2300 < Re < 4000 режим движения жидкости
- а) ламинарный;
- б) турбулентный;
- в) переходный;
- г) кавитационный.
- 43. Кавитация это
- а) воздействие давления жидкости на стенки трубопровода;
- б) движение жидкости в открытых руслах, связанное с интенсивным перемшиванием;
- в) местное изменение гидравлического сопротивления;
- г) изменение агрегатного состояния жидкости при движении в закрытых руслах, связанное с местным падением давления.
- 44. Какой буквой греческого алфавита обозначается коэффициент гидравлического трения?
- a) γ;
- б) ζ;
- B) λ;
- г) µ.
- **45.** По какой формуле определяется коэффициент гидравлического трения для ламинарного режима?

$$a) \ \lambda_T = \frac{0.3164}{\text{Re}^{0.25}};$$

$$\delta) \ \lambda = \frac{75}{Re};$$

Re
$$\lambda_T = 0.11 \left(\frac{\Delta_{\mathfrak{B}}}{d} + \frac{68}{\text{Re}} \right)^{0.25}; \quad \text{r) } \lambda_T = 0.11 \left(\frac{\Delta_{\mathfrak{B}}}{d} \right)^{0.25}$$

- **46.** На сколько областей делится турбулентный режим движения при определении коэффициента гидравлического трения?
- а) на две;
- б) на три;
- в) на четыре;
- г) на пять.
- **47.** От чего зависит коэффициент гидравлического трения в первой области турбулентного режима?
- а) только от числа Re;
- б) от числа Re и шероховатости стенок трубопровода;
- в) только от шероховатости стенок трубопровода;
- г) от числа Re, от длины и шероховатости стенок трубопровода.
- 48. От чего зависит коэффициент гидравлического трения во второй области турбулентного

режима?

- а) только от числа Re;
- б) от числа Re и шероховатости стенок трубопровода;
- в) только от шероховатости стенок трубопровода;
- г) от числа Re, от длины и шероховатости стенок трубопровода.
- **49.** От чего зависит коэффициент гидравлического трения в третьей области турбулентного режима? a) только от числа Re;
- б) от числа Re и шероховатости стенок трубопровода;
- в) только от шероховатости стенок трубопровода;
- г) от числа Re, от длины и шероховатости стенок трубопровода.
- 50. Какие трубы имеют наименьшую абсолютную шероховатость?
- а) чугунные;
- б) стеклянные;
- в) стальные;
- г) медные.

4.Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Критерии рейтинговых оценок по курсу «Гидравлика и гидропневмопривод»:

Критерии оценок входного контроля

Зачётная оценка	Рейтинговая оценка успеваемости		
Зачтено	45-100 %		
Не зачтено	менее 45 %		

Распределение баллов рейтинговой оценки между видами контроля

Форма про-	Количество баллов, не более				
межуточной аттестации	Текущий контроль	Рубежный контроль	Итоговый контроль	Сумма баллов	Поощри- тельные баллы
Зачет	50	30	20	100	10

«Автоматический» зачёт выставляется без опроса студентов по результатам контрольных работ, индивидуальных домашних заданий, других работ, выполненных студентами в течение семестра, а также по результатам текущей успеваемости на практических занятиях.

Оценка за «автоматический» зачет должна соответствовать итоговой оценке за работу в семестре.

Студенты, рейтинговые показатели которых ниже 45 баллов, сдают зачёт в традиционной форме. Рейтинговые оценки за зачёт, полученные этими студентами, не могут превышать 45 баллов. Оценивание качества устного ответа при промежуточной аттестации обучающегося (зачете)

Ожидаемые результаты:

Демонстрация знания основ гидравлики, необходимых для изучения дисциплины

Умения выявлять закономерности, лежащие в основе конкретных процессов и явлений; самостоятельно расширять и углублять знания

Владения навыками мышления в контексте решения профессиональных и социальноличностных задач; умением оценивать результаты измерительных экспериментов

Промежуточная аттестация - зачёт (5 семестр)

Зачётная оценка	Рейтинговая оценка успеваемости
Зачтено	80-100 баллов
Зачтено	60-79 баллов
Зачтено	45-59 баллов
Не зачтено	менее 45 баллов

Уровень знаний, умений и навыков обучающегося при устном ответе во время промежуточной аттестации определяется оценками «зачтено» или «не зачтено» по следующим *критериям:*

Критерии оценки:

Зачтено (45 баллов) ставится, если: студент полно усвоил учебный материал; проявляет навыки анализа, обобщения, осмысления, аргументации; материал изложен грамотно, в определенной логической последовательности, точно используется терминология; показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации; высказывать свою точку зрения; продемонстрировано усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость компетенций, умений и навыков. Могут быть допущены одна – две неточности при освещении второстепенных вопросов.

Не зачмено (менее 45 баллов) ставится, если: не раскрыто основное содержание учебного материала; обнаружено незнание или непонимание большей, или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких наводящих вопросов; не сформированы компетенции, умения и навыки критического восприятия информации.

Оценивание качества решения контрольной работы:

Ожидаемые результаты:

- -умение правильно выявлять закономерности, лежащие в основе конкретных процессов и явлений
- -владение навыками мышления в контексте решения задач

Критерии оценки:

- -соответствие предполагаемым ответам;
- -продемонстрирована способность анализировать и обобщать информацию.

Пороги оценок:

- **3 балла** полные и правильные ответы на 80 100% заданий контрольной работы, корректная запись ответа.
- **2 балла** полные и правильные ответы на 60 79% заданий контрольной работы, корректная запись ответа
- **1 балл** полные и правильные ответы на 45 59% заданий контрольной работы, корректная запись ответа
- 0 баллов полные и правильные ответы менее 45% заданий контрольной работы.

Оценивание качества решения тестов:

Ожидаемые результаты:

- -умение правильно выявлять закономерности, лежащие в основе конкретных процессов и явлений
- -владение навыками мышления в контексте решения задач

Критерии оценки:

- -соответствие предполагаемым ответам;
- -продемонстрирована способность анализировать и обобщать информацию.

Пороги оценок:

- **3 балла** полные и правильные ответы на 80 100% заданий тестов, корректная запись ответа.
- **2 балла** полные и правильные ответы на 60 79% заданий тестов, корректная запись ответа.
- **1 балл** полные и правильные ответы на 45 59% заданий тестов, корректная запись ответа.
- 0 баллов полные и правильные ответы менее 45% заданий тестов.

Оценивание качества решения расчётной работы:

Ожидаемые результаты:

- -умение правильно выявлять закономерности, лежащие в основе конкретных процессов и явлений
- -владение навыками мышления в контексте решения задач

Критерии оценки:

- -соответствие предполагаемым ответам;
- -продемонстрирована способность анализировать и обобщать информацию.

Пороги оценок:

- **3 балла** полные и правильные ответы на 80 100% заданий расчётной работы, корректная запись ответа
- **2 балла** полные и правильные ответы на 60 79% заданий расчётной работы, корректная запись ответа.
- **1 балл** полные и правильные ответы на 45 59% заданий расчётной работы, корректная запись ответа.
- 0 баллов полные и правильные ответы менее 45% заданий расчётной работы.

Оценивание работы обучающегося на лабораторных занятиях

Ожидаемый результат:

Демонстрация знания теоретических основ гидравлики и их расчетные формулы, законы движения

жидкостей и газов, физическую сущность явлений, изучаемых гидравликой; формы движения жидкости и уравнения, которыми они описываются

Умения использовать на практике основные принципы и общие положения современной гидравлики; выполнять экспериментальные исследования по определению параметров работы гидравлических машин

Владения методами построения моделей типовых задач в области гидравлики; методами проведения физических измерений

Критерии оценки:

- активное участие в обсуждении вопросов лабораторного занятия,
- самостоятельность ответов,
- свободное владение материалом,
- полные и аргументированные ответы на вопросы практического занятия,
- -твёрдое знание лекционного материала, обязательной и рекомендованной дополнительной литературы,
- полностью выполненная самостоятельная работа по теме практического занятия.

Пороги оценок:

- **1 балл** активное участие в обсуждении вопросов практического занятия, самостоятельность ответов, свободное владение материалом, полные и аргументированные ответы на вопросы практического занятия, твёрдое знание лекционного материала, обязательной и рекомендованной дополнительной литературы.
- 0, 5 недостаточно полное раскрытие некоторых вопросов темы, незначительные ошибки в формулировке категорий и понятий, меньшая активность на практическом занятии, неполное знание дополнительной литературы.

0 баллов - пассивность на практическом занятии, частая неготовность при ответах на вопросы, отсутствие качеств, указанных выше для получения более высоких оценок.

Разработал: к.т.н., доцент А.А. Хохлов